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Abstract. New consistency equations involving the internal energy and-when possible- 
the order parameter are proposed for lattice models; these equations are shown to be very 
efficient in classical examples such as the two- and three-dimensional k ing  model. However, 
their peculiarity is that they can also be applied to models where the order parameter is 
unknown and, consequently, any mean-field approach is ruled out. Applications to the 
self-avoiding walk and surface models are shown to be successful. 

1. Introduction 

A typical procedure to describe the thermodynamics of lattice models whose phase 
transition can be characterised by an order parameter amounts to writing down 
approximate consistency equations involving the order parameter. For instance, in 
the standard mean-field approximation the original model is approximated by a 
‘one-body’ problem in an effective field, which is determined in a self-consistent way. 
Improvements can be obtained considering more sophisticated approximate equations 
of state, which involve clusters with more than ‘one body’, but they still only include 
the magnetisation as a fundamental object (Domb 1960). 

Much attention has been paid in the literature to the application of these methods 
to spin and gauge models; in most cases the ‘magnetisation’ was considered as the 
order parameter, although for a large variety of statistical lattice models, like the gauge 
ones, it does not play the role of a true order parameter (for a review and references 
see Drouffe and Zuber (1983)). 

As far as we know there were no previous attempts to improve standard mean-field 
methods using correlation functions other than the ‘magnetisation’. 

In this paper we want to propose such an improvement, in particular keeping an 
eye on models where a local order parameter does not exist, such as the self-avoiding 
walk and surface models. 

The idea is basically the same as the one underlying the mean-field approximation, 
but now we want to look for more general equations of state, which can include many 
correlation functions in a cluster of many sites. 
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2. The two- and three-dimensional Ising model 

The best way to present this method is to consider the k ing  model on a square lattice, 
whose reduced Hamiltonian is 

where the sum runs over nearest-neighbour sites and  K is the reduced coupling constant. 
We are going to approximate this model in a finite 3 x 3 cluster, with free boundary 

conditions (figure l ) ,  where the effect of the infinite lattice is taken into account by 
introducing two different couplings, K’ and K”, on the internal and boundary links 
respectively; in other words we approximate the original model (1 ) with the Hamil- 
tonian 

4 8 

Ho= K ’ a o  1 uzi+ K ”  1 ( l a >  
i =  1 , = I  

Figure 1. Sublattice considered for the two-dimensional Ising model and for the SAW 
model. An effective coupling K ”  ( K ‘ )  is associated to the bonds drawn with a double 
(single) line. 

where u9 = 0,. The physical idea is to restore translational invariance in a finite cluster 
without using periodic boundary conditions?. In order to obtain an  approximation as 
simple as the mean-field one, but with the essential ingredients of our main idea, in 
this paper we restrict ourselves to the simplest case of requiring translational invariance 
for the internal energy, i.e. 

(0, U z )  K I (  K ” = (go(+*) K ,. K , ,  . (2) 
Due to the symmetry of the problem this choice is completely general. Equation (2)  
allows us to express K’ as a function of K”, thus leading to only one free parameter. 
On clusters of increasing size the natural choice should be to assign the coupling K ”  
only to the boundary links and to identify the bulk coupling, K‘, with the original 
one, K ;  however, for small clusters another convenient recipe, which we will follow 
here, is to consider the weighted average of the couplings K‘ and K”,  i.e., for the 
cluster in figure 1, 

K =f (2K”+  K ’ ) .  (3)  

t This is reminiscent of the Bethe-Peierls approximation (Huang 1963) where translational invariance is 
imposed on the magnetisation. 
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The result is a clear bump in the specific heat at K = 0.387 (which, using equation 
(3) ,  corresponds to K ,  = 0.47) 

where N ,  and Nb are respectively the number of the sites and bonds of the cluster in 
figure 1, k ,  is the Boltzmann constant and U ( K )  is the common value of the Green 
functions in equation (2).  

As is usual in finite cluster calculations (Ferdinand and Fisher 1969), this bump 
should be interpreted as a signal of a phase transition at K ,  = 0.47 (to be compared 
with the exact critical coupling K ,  = 0.4407). In this particular case where the order 
parameter is well defined, one can easily improve the thermodynamics by taking into 
account a further consistency equation for the magnetic field h acting on the boundary 
variables in the cluster pictured in figure 1. The Hamiltonian for such a cluster can 
be written as follows 

4 8 4 

H l = K f a o  a 2 , + K "  c a,a,+,+h ( U ~ , + ~ U ~ , - ~ ) .  (5) 
3 = I  1 = I  I =  I 

Now, the consistency equations are 

where m ( K )  stands for the magnetisation. (In principle one should use two different 
fields h l  and h,  in the sites (1,3,5,7) and (2,4,6,8),  so as to impose (ao) = (a , )  =(a2).  
However we have limited our analysis to equations (6a),  (66) to avoid the introduction 
of too many parameters.) The introduction of equation (66) significantly modifies the 
result previously obtained for the specific heat and furthermore allows us to calculate 
the magnetisation. 

We report in figure 2 the result for the specific heat. The exact and the Bethe-Peierls 
approximation results are also reported for comparison. 

T /  Tc 

Figure 2. Specific heat for the two-dimensional Ising model obtained in our approximation 
(broken curve); in the Bethe-Peierls approximation (dotted curve); and in the Onsager 
solution (full curve). 
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A comparable improvement with respect to the Bethe-Peierls approximation is 
also provided by our method for the magnetisation. 

We want to point out that these results are definitely better than those obtained by 
standard consistency equations (Domb 1960). 

In particular we obtain a critical coupling K,=0.447 (K’=0.392)  and a jump in 
the specific heat ( A C / k , N , ) (  K = K , =  2.7, whose maximum value is (C,,,/ K B N s ) l K = K , =  
3, which is qualitatively comparable with the results obtained on a periodic 64 x 6 4  
square sublattice (Ferdinand and Fisher 1969). 

It is worthwhile to look at the behaviour of the quantity R = ( 1  -,I”‘’) as a 
function of K,  because one can infer how K ”  and h simulate the effect of the spins 
surrounding the cluster in figure 1. As shown in figure 3, R increases up to K = K , ;  
in this region the effective external coupling K”, which simulates the effect of the 
surrounding lattice, increases faster than K ’ ;  at K b K ,  a spontaneous magnetisation 
occurs and h is different from zero; R decreases because the ordering effect is now 
also due to the effective magnetic field h ;  finally as the spontaneous magnetisation 
saturates, R increases again. 

K :  
K 

Figure 3. Behaviour of R = ( K “ -  K ‘ ) /  K ’  as a function of K = ( 2 K ” +  K ’ ) / 3  for the Ising 
model. 

Without complicating the geometry of the cluster, we have also applied this method 
to the d = 3 case, embedding the cluster of figure 1 in a cubic lattice simply adding 
transverse effective magnetic fields h with proper multiplicity on each site. 

The resulting effective Hamiltonian is: 

and, using equations (6a)  and (66)  and this new Hamiltonian, we have obtained the 
critical coupling K,  = 0.2 18 (KL = 0.21 1) to be compared with the best known estimate, 
K,=0.221 (Pawley er al 1984). Also in this case the thermodynamic properties are 
significantly better than the usual mean-field approximation. 

It is straightforward to verify that, embedding the cluster of figure 1 in a d- 
dimensional lattice, by simply adding transverse magnetic fields, in the d +CO limit the 
mean-field result is recovered. 
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3. The self-avoiding walk model 

We think that our method should be more appreciated when one is concerned with 
models where the order parameter is unknown or  probably does not exist. 

Let us consider a model which has this typical feature-the well known self- 
avoiding walk (SAW) (De  Gennes 1979). We restrict ourselves to a square lattice and  
define a two-point correlation function (generating function) 

G ( x , y ;  K ) =  KIWI 
w :  a w = {x,).} 

where the sum runs over all the non-self-intersecting walks, whose elementary steps 
link nearest-neighbour sites and whose end points are x and y. 

The statistical weight associated to a walk W composed of I Wl steps is KIWI where 
K is the so-called monomer fugacity. From Hammersley theorem (Hammersley 1961) 
it is known that equation (8) is convergent as far as O <  K < K,, where K ,  is some 
'critical' value less than 1. Furthermore, if we define in strict analogy with the spin 
models the 'internal energy' 

d 

U ( K ) =  K G ( x , x + b ;  K )  
; = I  

(9) 

where 4 are the unit vectors in the directions of the lattice axes it is believed that 

U (  K )  = constant x ( K c -  K ) ' - a  +(regular terms) ('lo) K-K, 

where CY is a critical index, which is 0.5 in two dimensions (De  Gennes 1979). 
Now let us apply the method discussed for the Ising model, using only the two-point 

correlation function. We consider the same cluster as in the previous section (figure 
1 )  and the consistency equation is now 

G( 1 , 2 ;  K ' ,  K " )  = G(O,8; K ' ,  K " )  ( 1 1 )  

where the effective fugacities K '  and K"  refer to the internal and  external links 
respectively. In analogy with the Ising case K '  and K "  are connected to the original 
coupling by the same relation (3). 

Fixing K '  in equation (11) one obtains the corresponding value of K " ;  if one 
follows this solution continuously for increasing values of K ' ,  it disappears at K ' -  
0.406. 

According to Hammersley theorem this can be interpreted as the transition point, 
above which equation (9) is not defined; this corresponds to the critical value K ,  = 0.64. 
Defining G(x, x + @ ; K )  in equation (9) as the common value of both sides of equa t im 
(1 1) one obtains U (  K )  (figure 4), which obeys equation (10) with a = i. These results 
are to be compared with the accepted values CY = i  and K,=0.38 ( D e  Gennes 1979). 

Unfortunately, the coincidence of the value of a with the accepted one seems to 
be quite accidental, because using simple general arguments our method predicts a = 
in any dimension. Moreover the inaccuracy in the determination of K is due to the 
poor statistics allowed by our small cluster and by the constraint imposed on the walk 
to be self-avoiding. There are various recipes to improve this result: one could enlarge 
the size of the cluster without introducing further consistency equations and/or  one 
could require consistency equations on an  enlarged parameter space (Cappelli et a1 
1985). 
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K, 
K 

Figure 4. 'Internal energy' for the SAW model obtained by applying our method to the 
sublattice pictured in figure 1. 

Anyway, we want to stress that the important feature of our method is to give a 
phase transition for the SAW model in qualitative agreement with the expected one. 
In fact if, for example, one tried to infer some information on this phase transition 
looking at the specific heat C = 8 U ( K ) / a K  using a cluster with periodic boundary 
conditions (in analogy with the calculations for the Ising model by Ferdinand and 
Fisher 1969) one could not obtain any signal of a critical point; this is due to the fact 
that C ( K )  is a polynomial in K with positive coefficients. 

4. Self-avoiding surfaces 

A generalisation of the SAW is given by the self-avoiding surfaces (SAS) model. 
They are built up by elementary squares (plaquettes) P on a hypercubic lattice 

with the constraint that each bond b of a surface S is shared by two plaquettes, unless 
b E 8s. In this latter case b belongs to only one plaquette. A fugacity K is associated 
to each plaquette belonging to S ;  the correlation functions can be defined like in the 
SAW model. For our purpose we need only the Green function associated to a closed 
non-intersecting path 

G ( y ) =  K"' 
s:as=v 

where the sum runs over all the SAS, S, of area IS( and boundary as = y i .  In particular 
we are interested in the 'internal energy' 

where P;; is a fixed plaquette in the ( k ,  5 )  coordinate plane and U is expected to 
have the same behaviour as described in equation (IO). 

In order to apply our method to this model in three dimensions we use the cubic 
cluster pictured in figure 5; K "  and K '  represent the effective fugacities of the boundary 
and internal plaquettes respectively. 

i The straightforward generalisation of the Hammersley theorem for this model was given by Durhuus el 
al (1983). It implies that the sum in equation (12) is convergent for O <  K < K c <  1. 
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Figure S. Sublattice used for the three-dimensional SAS model. The effective fugacity 
K ” (  K ’ )  is associated with the boundary (internal) plaquettes. 

In this case we also impose a consistency equation in the form 

G ( 8 P ‘ )  = G ( 8 P )  (14) 

where P’ and P are one of the boundary and internal plaquettes respectively. The 
common value obtained from equation (14) inserted in equation (12) provides the 
internal energy U (  K )  (figure 6), where, as usual, K is defined as the weighted average 
of the effective couplings K ”  and K ’ :  

(15) K = f (4 K ” + 3 K ’) . 

Also in this case we recover the behaviour described by equation (10) with a = f 
and K ,  = 0.623, K :  = 0.537 to be compared with the Monte Carlo estimate K ,  = 0.588 
(Greensite and Sterling 1983) and K ,  = 0.62-0.64 obtained from renormalisation group 
calculations (Maritan and Stella 1984). Concerning the value of a, as in the SAW case, 
it does not change with the dimension in our method. The significantly better estimate 
of K ,  with respect to the SAW case is due to the higher statistics allowed in the considered 
cluster. 

I I 
I 1 

~ 

i 

2 

I 

I 

0 0 1  0 2  0.3 0 4  0 5  0 6 1  
K: 

K 

Figure 6. ‘Internal energy’ for the SAS model obtained by applying our method to the 
sublattice pictured in figure 5 .  
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5. Conclusions 

We have considered new consistency equations for lattice models which present the 
following main features. 

They significantly improve mean-field methods for models where the order para- 
meter is well defined, like in the Ising model; but, what is more relevant, they are also 
able to predict in a simple way a phase transition for those models, like the SAW and 
SAS, where it is not clear what the order parameter should be. 

In these two last cases the non-analyticity in the thermodynamic quantities, like 
the ‘specific heat’, is provided just by the self-consistency equation for the two-point 
Green functions. 

We think that the extension of such a technique to frustrated systems and to gauge 
models should be quite interesting (Capelli et a1 1985). 
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